Category Archives: Seasonal Malaria Chemoprevention

Malaria News Today 2020-09-22: covering three continents

Today’s stories cover three continents including Surveillance for imported malaria in Sri Lanka, community perceptions in Colombia and Annual Fluctuations in Malaria Transmission Intensity in 5 sub-Saharan countries. In addition there is an overview of microscopy standards and an Integrated Macroeconomic Epidemiological Demographic Model to aid in planning malaria elimination. We also see how COVID-19 is disturbing Seasonal Malaria Chemoprevention activities in Burkina Faso. Read more by following the links in the sections below.

Will More of the Same Achieve Malaria Elimination?

Results from an Integrated Macroeconomic Epidemiological Demographic Model. Historic levels of funding have reduced the global burden of malaria in recent years. Questions remain, however, as to whether scaling up interventions, in parallel with economic growth, has made malaria elimination more likely today than previously. The consequences of “trying but failing” to eliminate malaria are also uncertain. Reduced malaria exposure decreases the acquisition of semi-immunity during childhood, a necessary phase of the immunological transition that occurs on the pathway to malaria elimination. During this transitional period, the risk of malaria resurgence increases as proportionately more individuals across all age-groups are less able to manage infections by immune response alone. We developed a robust model that integrates the effects of malaria transmission, demography, and macroeconomics in the context of Plasmodium falciparum malaria within a hyperendemic environment.

The authors analyzed the potential for existing interventions, alongside economic development, to achieve malaria elimination. Simulation results indicate that a 2% increase in future economic growth will increase the US$5.1 billion cumulative economic burden of malaria in Ghana to US$7.2 billion, although increasing regional insecticide-treated net coverage rates by 25% will lower malaria reproduction numbers by just 9%, reduce population-wide morbidity by ?0.1%, and reduce prevalence from 54% to 46% by 2034. As scaling up current malaria control tools, combined with economic growth, will be insufficient to interrupt malaria transmission in Ghana, high levels of malaria control should be maintained and investment in research and development should be increased to maintain the gains of the past decade and to minimize the risk of resurgence, as transmission drops. © The American Society of Tropical Medicine and Hygiene [open-access]

Microscopy standards to harmonise methods for malaria clinical research studies

Research Malaria Microscopy Standards (ReMMS) applicable to malaria clinical research studies have been published in Malaria Journal. The paper describes the rationale for proposed standards to prepare, stain and examine blood films for malaria parasites. The standards complement the methods manual(link is external) previously published by the World Health Organization and UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases (TDR). The standards aim to promote consistency and comparability of data from microscopy performed for malaria research and hence to strengthen evidence for improvements in malaria prevention, diagnostics and treatment.

Microscopy is important in both malaria diagnosis and research. It is used to differentiate between Plasmodium species and stages and to estimate parasite density in the blood – an important determinant of the severity of disease. It is also used to monitor the effectiveness of drugs based on the rate at which parasites recrudesce or are cleared from the blood.

While rapid diagnostic tests have replaced microscopy in some contexts, microscopy remains an essential tool to support clinical diagnosis and research. The standardisation of methods allows direct comparisons from studies conducted across different points in time and location. This facilitates individual participant data meta-analyses, recognised as the gold standard approach to generate evidence for improvements in interventions and hence patient outcomes.

Estimating Annual Fluctuations in Malaria Transmission Intensity and in the Use of Malaria Control Interventions in Five Sub-Saharan African Countries

RTS,S/AS01E malaria vaccine safety, effectiveness, and impact will be assessed in pre- and post-vaccine introduction studies, comparing the occurrence of malaria cases and adverse events in vaccinated versus unvaccinated children. Because those comparisons may be confounded by potential year-to-year fluctuations in malaria transmission intensity and malaria control intervention usage, the latter should be carefully monitored to adequately adjust the analyses. This observational cross-sectional study is assessing Plasmodium falciparum parasite prevalence (PfPR) and malaria control intervention usage over nine annual surveys performed at peak parasite transmission. Plasmodium falciparum parasite prevalence was measured by microscopy and nucleic acid amplification test (quantitative PCR) in parallel in all participants, and defined as the proportion of infected participants among participants tested. Results of surveys 1 (S1) and 2 (S2), conducted in five sub-Saharan African countries, including some participating in the Malaria Vaccine Implementation Programme (MVIP), are reported herein; 4,208 and 4,199 children were, respectively, included in the analyses.

Plasmodium falciparum parasite prevalence estimated using microscopy varied between study sites in both surveys, with the lowest prevalence in Senegalese sites and the highest in Burkina Faso. In sites located in the MVIP areas (Kintampo and Kombewa), PfPR in children aged 6 months to 4 years ranged from 24.8% to 27.3%, depending on the study site and the survey. Overall, 89.5% and 86.4% of children used a bednet in S1 and S2, of whom 68.7% and 77.9% used impregnated bednets. No major difference was observed between the two surveys in terms of PfPR or use of malaria control interventions. © The American Society of Tropical Medicine and Hygiene [open-access]

Community perception of malaria in a vulnerable municipality in the Colombian Pacific

Malaria primarily affects populations living in poor socioeconomic conditions, with limited access to basic services, deteriorating environmental conditions, and barriers to accessing health services. Control programmes are designed without participation from the communities involved, ignoring local knowledge and sociopolitical and cultural dynamics surrounding their main health problems, which implies imposing decontextualized control measures that reduce coverage and the impact of interventions. The objective of this study was to determine the community perception of malaria in the municipality of Olaya Herrera in the Colombian Pacific.

A 41-question survey on knowledge, attitudes, and practices (KAP) related to malaria, the perception of actions by the Department of Health, and access to the health services network was conducted. In spite of the knowledge about malaria and the efforts of the Department of Health to prevent it, the community actions do not seem to be consistent with this knowledge, as the number of cases of malaria is still high in the area.

Use of a Plasmodium vivax genetic barcode for genomic surveillance and parasite tracking in Sri Lanka

Sri Lanka was certified as a malaria-free nation in 2016; however, imported malaria cases continue to be reported. Evidence-based information on the genetic structure/diversity of the parasite populations is useful to understand the population history, assess the trends in transmission patterns, as well as to predict threatening phenotypes that may be introduced and spread in parasite populations disrupting elimination programmes. This study used a previously developed Plasmodium vivax single nucleotide polymorphism (SNP) barcode to evaluate the population dynamics of P. vivax parasite isolates from Sri Lanka and to assess the ability of the SNP barcode for tracking the parasites to its origin.

A total of 51 P. vivax samples collected during 2005–2011, mainly from three provinces of the country, were genotyped for 40 previously identified P. vivax SNPs using a high-resolution melting (HRM), single-nucleotide barcode method. The proportion of multi-clone infections was significantly higher in isolates collected during an infection outbreak in year 2007. Plasmodium vivax parasite isolates collected during a disease outbreak in year 2007 were more genetically diverse compared to those collected from other years. In-silico analysis using the 40 SNP barcode is a useful tool to track the origin of an isolate of uncertain origin, especially to differentiate indigenous from imported cases. However, an extended barcode with more SNPs may be needed to distinguish highly clonal populations within the country.

Coronavirus rumours and regulations mar Burkina Faso’s malaria fight

By Sam Mednick, Thomson Reuters Foundation: MOAGA, Burkina Faso – Health worker Estelle Sanon would hold the 18-month-old and administer the SMC dose herself, but because of coronavirus she has to keep a distance from her patients. “If I am standing and watching the mother do it, it’s as if I’m not doing my work,” said Sanon, a community health volunteer assisting in a seasonal campaign to protect children in the West African country from the deadly mosquito-borne disease.

Burkina Faso is one of the 10 worst malaria-affected nations in the world, accounting for 3% of the estimated 405,000 malaria deaths globally in 2018, according to the World Health Organization (WHO). More than two-thirds of victims are children under five. Now there are fears malaria cases could rise in Burkina Faso as restrictions due to coronavirus slow down a mass treatment campaign and rumours over the virus causing parents to hide their children, according to health workers and aid officials.

“COVID-19 has the potential to worsen Burkina Faso’s malaria burden,” said Donald Brooks, head of the U.S. aid group Initiative: Eau, who has worked on several public health campaigns in the country.  “If preventative campaigns can’t be thoroughly carried out and if people are too scared to come to health centres … it could certainly increase the number of severe cases and the risk of poor outcomes.”

During peak malaria season, from July to November, community health workers deploy across Burkina Faso to treat children with seasonal malaria chemoprevention (SMC). This is the second year the campaign will cover the whole country with more than 50,000 volunteers going door-to-door, said Gauthier Tougri, coordinator for the country’s anti-malaria programme. Logistics were already challenging. Violence linked to jihadists and local militias has forced more than one million people to flee their homes, shuttered health clinics and made large swathes of land inaccessible. Now the coronavirus has made the task even harder, health workers said.

People in Cape Verde evolved better malaria resistance in 550 years

Yes, we are still evolving. And one of the strongest examples of recent evolution in people has been found on the Cape Verde islands in the Atlantic, where a gene variant conferring a form of malaria resistance has become more common.

Portuguese voyagers settled the uninhabited islands in 1462, bringing slaves from Africa with them. Most of the archipelago’s half a million inhabitants are descended from these peoples. Most people of West African origin have a variant in a gene called DARC that protects.

Deadly malaria and cholera outbreaks grow amongst refugees as COVID pandemic strains health systems.

Apart from the strain on health facilities during the pandemic, in some countries such as Somalia, Kenya and Sierra Leone, we are seeing that a fear of exposure to COVID-19 has prevented parents from taking their children to hospital, delaying diagnosis and treatment of malaria and increasing preventable deaths. COVID restrictions in some countries have also meant pregnant women have missed antimalarial drugs. Untreated malaria in pregnant women can increase the risk of anaemia, premature births, low birth weight and infant death. According to the World Health Organization (WHO), 80% of programs designed to fight HIV, tuberculosis and malaria have been disrupted due to the pandemic and 46% of 68 countries report experiencing disruptions in the treatment and diagnosis of malaria.

Malaria News Today 2020-09-21: Vectors, Cities and Chimpanzees

First we look at how disease can influence urban planning. We have four news stories focus on field activities for vector control from Hyderabad, India, Borno State, Nigeria, Papua New Guinea and CHAD. Finally there is an ancestry article of sorts examining plasmodia in chimpanzees and humans. Click on the links to read full details.

Can Covid-19 inspire a new way of planning African cities?

Health crises are not new in Africa. The continent has grappled with infectious diseases on all levels, from local (such as malaria) to regional (Ebola) to global (Covid-19). The region has often carried a disproportionately high burden of global infectious outbreaks.
How cities are planned is critical for managing infectious diseases. Historically, many urban planning innovations emerged in response to health crises. The global cholera epidemic in the 1800s led to improved urban sanitation systems. Respiratory infections in overcrowded slums in Europe inspired modern housing regulations during the industrial era.

Urban planning in Africa during colonisation followed a similar pattern. In Anglophone Africa, cholera and bubonic plague outbreaks in Nairobi (Kenya) and Lagos (Nigeria) led to new urban planning strategies. These included slum clearance and urban infrastructure upgrades. Urban planning in French colonial Africa similarly focused on health and hygiene issues, but also safety and security.

Unfortunately regional experiences with cholera, malaria and even Ebola in African cities provide little evidence that they have triggered a new urban planning ethic that prioritises infectious outbreaks. Our recent research paper discusses three areas that can transform urban planning in the continent to prepare for future infectious outbreaks, using lessons from Covid-19.

The Coronavirus and other viruses like Ebola have always been ‘out there’ in nature.

But it’s only when we disrupt the natural habitats of the wild animals. Deadly viruses stay beneath the surface and need just one moment of triggering to emerge in the atmosphere and take the world by storm – historian Dr Mark Honigsbaum. The point is we cannot prevent all spillover events or predict precisely when or where the next one will happen. What we can do — and should do often — is invest in local laboratories and diagnostic services so that we can spot unusual outbreaks early and close them down quickly

We should note that Plasmidium Knowlesi is an example of a form of malaria from monkeys that arose because of urban expansion on forest habitats.

Hyderabad: People sensitised on mosquito breeding

As part of a novel initiative, every Sunday 10 am, 10 minute programme, the entomology wing of Greater Hyderabad Municipal Corporation conducted awareness drive on mosquito breeding grounds at various places on Sunday. They explained the importance of cleanliness and the ways the mosquito breeding takes place in stagnated water. Speaking on the occasion, Banjara Hills Corporator Gadwal Vijayalaxmi called upon everyone not to allow accumulation of water in containers, utensils and surroundings.

Borno, WHO Administer Malaria Prevention Drug on 2.1m Children

WHO National Coordinator Malaria Emergencies in Nigeria, Dr. Iniabasi Nglas gave the figure during a four round Malaria Chemoprevention Campaigns (MPCs aka SMC) in 25 of the 27 local government areas of Borno State. During the advocacy, Nglas said the IDP camps “are given special attention for there is high threat of malaria infection due to the environment. Record has shown that the treatment has reduced malaria morbidity in the state.” She revealed that during the first cycle, 1.9 million children were targeted but due to high reception 2.1 million children were administered with the drug.

Rotary Against Malaria Distributes Nets in PNG

ROTARY Against Malaria has finally completed its distribution of bed net mosquito nets throughout the Eastern Highlands Province (EHP) after three months. Team leader of Rotary Against Malaria in the province, Helmut Magino, during a ceremony in Goroka, acknowledged his working staff, the Eastern Highlands Provincial Health Authority, district health officers, logistic company Mapai Transport, Summer Institute of Linguistics (SIL)
and the communities in Papua New Guinea.

“Without these partners, our work in distributing mosquito nets wouldn’t have been successful,” Mr Magino said. “Mapai Transport assisted with vehicles to travel to the remote parts in Okapa, Henganofi and Lufa. “SIL assisted with distribution via airplane to remote parts which are not connected by road like in Obura-Wonenara district.” The volunteer-run organisation funded by Global Fund, a US-based organisation, distributed 145,900 mosquito nets in the province. “We distributed around 45,000 nets to Okapa and Lufa, 35,000 to Obura-Wonenara and 66,900 to rural areas in Goroka district. “We will visit EHP again next year to distribute nets …”

Donating Emergency IRS Supplies to CHAD

Last week, despite the COVID-19 pandemic, a Hercules military transport aircraft took off from an Israeli military base in the south, filled to capacity with items donated by Israeli Flying Aid IFA and the American Jewish Committee (AJC) — 2,000 six-person tents, personal protection equipment (PPE) for medical teams, backpack sprayers to eradicate malaria-carrying mosquitos, and more.

Why humans can run marathons and apes cannot (implication for plasmodium species)

Chimpanzees share more than 99 percent of their genes with modern humans, but the CMAH gene is one of the areas of difference. Two to three million years ago, gorillas, chimpanzees, and other primates were dying from a type of malaria called Plasmodium reichenowi (Science, 2011;331:540-542). At that time, all primates had a surface protein called Neu5Gc on their cells that was made from Neu5Ac. Then along came a primate with a gene that had lost its ability to make Neu5Gc from Neu5Ac, so it had only Neu5Ac (Proc Natl Acad Sci USA, Sept 6, 2005;102(36):12819-12824).

That pre-human did not die from malaria like other primates, his and her children lived and proliferated, and today their descendants (all humans) have a gene that makes Neu5Ac instead of Neu5Gc. As often happens in nature, the malaria parasite then modified its genetic makeup into a variant called Plasmodium falciparum which can infect humans, but not chimpanzees, so today humans can be infected only with Plasmodium falciparum and chimpanzees can be infected only with Plasmodium reichenowi. This same genetic mutation gave homo sapiens greater endurance so they were able to run long distances while the apes could not, which gave humans an advantage in hunting for food (J Hum Evol, 2014;66:64-82).

Using Seasonal Malaria Chemoprevention (SMC) to Screen for Acute Malnutrition

Moumouni Bonkoungou, Ousmane Badolo, Youssouf Sawadogo, Stanislas Nebie, Thierry Ouedraogo, Yacouba Savadogo, William Brieger, Gladys Tetteh, and Blami Dao (affiliation PMI Improving Malaria Care Project; Jhpiego Baltimore; Johns Hopkins University; Ministry of Health, National Malaria Control Program) presented a poster entitled Using Seasonal Malaria Chemoprevention (SMC) to Screen for Acute Malnutrition at the 68th Annual Meeting of the American Society of Tropical Medicine and Hygiene. Their findings are outlined below.

Malaria and malnutrition remain major public health burdens in Burkina Faso for children under five years of age. In 2017 the case fatality rate of malaria was 1.5 percent among children under five years of age and malaria was responsible for 35.9 percent of deaths in primary health facilities. Malnutrition was responsible for 4.6 percent of deaths in primary health facilities and 3.3 percent of deaths in hospitals in 2017.

What is IMC project? The US President’s Malaria Initiative (PMI) funded the Improving malaria Care (IMC) since 2013 to support National Malaria Control Program (NMCP). The goal is to improve quality of malaria prevention, diagnosis and treatment through 05 strategies.

Malnutrition was detected at the level of health facilities. The nutrition program did not have resources for active screening for malnutrition Since 2018, it has been decided on the couple with the SMC to recruit more children.

What is the strategy? In 2018, Burkina Faso Seasonal Malaria Chemoprevention (SMC) campaign integrated malnutrition screening in 12 health districts supported by IMC. During the SMC campaign, community health workers administer sulfadoxine-pyrimethamine + amodiaquine (SP+AQ).

They also screened for malnutrition using the Shakir sling to measure mid-upper arm circumference to detect for acute malnutrition. Children who are not severely malnourished receive the standard malaria preventative treatment by SP+AQ. Children diagnosed with severe malnutrition do not receive SP+AQ and are referred to health facilities for appropriate case management.

Moderate and severe malnutrition was documented in October 2019. In November, after the last round (October), 427 children with severe acute malnutrition have been reported by health facilities. 81.3 percent of severe acute malnutrition detected during SMC.

Challenges of SMC and malnutrition screening were documented as follows:

  • Inaccessibility of some areas
  • Reference of severe cases for management
  • Adequate home management of moderate cases
  • Proper care of referred children in health facilities
  • Follow-up of referrals
  • Search for those not followed-up

In Conclusion in the context of a limited resource country, SMC is a good strategy for the reduction of malaria cases as well as a great opportunity for the detection and management of malnutrition in children under five years of age. It is recommended to Couple the screening of malnutrition with other activities (immunization, distribution of bednets …). Raising parents’ awareness of the importance of managing cases is necessary as is Encouraging active case finding and community referral.

This poster was made possible by the generous support of the American people through the United States Agency for International Development (USAID) under Cooperative Agreement No. AID-624-A-13-00010 and the President’s Malaria Initiative (PMI). The contents are the responsibility of the authors and do not necessarily reflect the views of USAID, PMI or the United States Government.

Zero Malaria Starts with Universal Coverage: Part 2 Preventive and Curative Treatments

April hosts several important global health days or observances. On World Health Day 2019 WHO stressed that, “Universal health coverage (UHC) is WHO’s number one goal. Key to achieving it is ensuring that everyone can obtain the care they need, when they need it, right in the heart of the community.” Nationwide monitoring through the Demographic and Health Surveys (DHS), the Malaria Indicator Surveys (MIS) and the Multi-Indicator Cluster Surveys (MICS) can document the status of appropriate malaria treatment and intermittent preventive treatment in pregnant women (IPTp).

Definitions of indicators have evolved for treatment-related malaria interventions. When Intermittent Preventive Treatment for pregnant women (IPTp) began in the early 2000s, the recommended dosing was twice during pregnancy after the first trimester one month apart in high and/or stable transmission areas. Due to lessening efficacy of sulfadoxine-pyrimethamine (SP), the dosage recommendation has changed to at least three times, still a month apart from the beginning of the second trimester.

This updated policy was broadcast widely between 2012 and 2013, but it took countries some time to build capacity and scale up for the expanded coverage goals. UNICEF Data5 again show that between 2014 and 2017 coverage was far below either 80% of pregnant women, let alone reaching them universally (Figure 2). Most countries achieved 30% or less coverage. Zambia at 50% was the highest. Low coverage leaves both pregnant women and the unborn child at risk for anemia and death in the former and low birth weight, still birth or miscarriage for the latter. The World Malaria Report of 2018 estimates that three doses of IPTp were received by only 22% of pregnant women in the target countries in 2017.

The concept of IPT was investigated for infants and children during by a consortium of researchers in several African Countries. It was found that IPTi with SP could have a positive effect on preventing malaria. To operationalize this concept, the World Health Organization developed what is known as Seasonal Malaria Chemoprevention (SMC) that would be delivered in the Sahel region of West Africa where malaria transmission itself is seasonal and where there are some countries with very low transmission with implications for malaria elimination.

The SMC delivery process was not linked to immunization but provided by community health workers and volunteers. SP and Amodiaquine (SP-AQ) were used in combination and provided monthly, three or four times during the rainy/high transmission season. Coverage was targeted at children below school age. It is only recently that SMC has been scaled up to reach all eligible countries or states and regions within designated countries.

WHO states that SMC focuses on, “children aged 3–59 months (and) reduces the incidence of clinical attacks and severe malaria by about 75%.” In some countries the coverage is extended to primary school aged children, making comparisons and calculations of coverage (universal por otherwise) challenging.

The World Malaria Report of 2018 notes that, “In 2017, 15.7 million children in 12 countries in Africa’s Sahel subregion were protected through seasonal malaria chemoprevention (SMC) programs. However, about 13.6 million children who could have benefited from this intervention were not covered, mainly due to a lack of funding.” This implies that 54% of eligible children were reached.  Coverage of SMC can refer to receiving any of the doses or as having received all the monthly doses offered by a nation’s malaria control program. Specifically, the World Malaria Report 2018 drew on surveys in 7 countries that provided 4 monthly doses to determine that 53% of children received all doses.

Determining coverage for malaria treatment for sick people is not as straightforward as finding out the numbers who slept under an ITN or swallowed IPTp doses, and even those are not simple. As defined, correct treatment first consists of parasitological diagnosis, which at the primary care level could be by microscopy or rapid diagnostic test (RDT). The next issue is treating only those with positive tests. Finally, the treatment must consist of age- or weight-specific doses of an approved artemisinin-based combination therapy (ACT) drug. Very few clinic records or surveys document whether the treatment given is ‘correct’ by these standards.

WHO addresses the need for achieving universal access to malaria diagnostic testing and notes this will not be easy. They provide a successful example of Senegal, where following the introduction of malaria RDTs in 2007, malaria diagnostic testing rates rose rapidly from 4% to 86% (by 2009). Logistics, funding, training and supportive supervision complicate implementation.

UNICEF Data report that performance of malaria diagnostics in febrile children in surveys between 2014-17 was approximately 30% on average for countries with national surveys within that time frame (Figure 3). Only 4 countries achieved 50% or better. Most surveys then go on to report the number of febrile children who received ACTs, but do not necessary indicate how many who were correctly diagnoses were given ACTs vs those who received ACT but did not receive a test or tested negative.

The Nigeria 2015 Malaria Indicator Survey Illustrates this dilemma. Among 2600 children who reported having a fever in the two weeks preceding the survey, 66.1% sought advice (or care). Overall, 12.6% of febrile children received a diagnostic test as defined in the question as to whether the child was stuck on the finger or heel to obtain blood. Among the febrile children 37.6% reportedly were given some type of antimalarial drug. Overall 15.5% of febrile children were given an ACT. Even if ACTs were given only to tested children, not all tests would have been positive.

The overall implication of measuring treatment without a link to testing is that if more children receive any, let alone the correct drugs, is that evidence for actual presence of disease. We have a long way to go to measure malaria treatment coverage correctly, not to mention achieving universal coverage with appropriate treatment. Different malaria treatment-related interventions with different steps and different target groups in different regions of Africa and the World make defining, no less achieving UHC, a huge challenge.

A child’s personal experiences with malaria lead to a life career fighting the disease

Gbenga Jokodola tells his story of growing up to fight malaria in Nigeria. Gbenga has a MPH in Field Epidemiology from the University of Ibadan, and a BPharm from Ahmadu Bello University. He is currently working with Malaria Consortium as a Zonal Project Manager on the Seasonal Malaria Chemoprevention (SMC) Project, delivering preventive care to over 400,000 children between the ages of 3 – 59 months in Jigawa and Katsina States of Nigeria. He has worked on several malaria projects over the years sponsored by Unicef, the Global Fund, Catholic Relief Services and the Bill & Melinda Gates Foundation. As he narrates below, his early experiences with malaria were formative of his present focus in life.

At 3 months of age Gbenga was probably still protected from malaria by maternal antibodies and did not realize what malaria held in store for his future

Growing up in Zaria, northern Nigeria in the 70s and 80s was one of the best experience any child could ask for. I lived with my parents in two rented rooms in a compound on one of the streets in Sabon Gari Zaria – a community that had virtually all the tribes in Nigeria and of course, with all the love and communal living you can ever get from a true Nigerian community.

In such loving setting we enjoyed as children, I imagined that mosquito communities also lived around our pit latrine and backyard. I imagined that parent-mosquitoes trained their off-springs very well on how to bite and fly away tactfully, how to dodge the usual clap-like manner we use in killing mosquitoes, which homes to avoid visiting, and so on.

I was reputed to be a strong boy then, one of the few kids who were “strong”; I was a “tough” boy who rarely fell ill to malaria. Then, it was common to hear, “Gbenga is a strong boy”. I ate and slept in any room in our compound – with or without covering from mosquito and was hailed for doing so by my friends who often fall ill to malaria.

Life lesson as a Primary School pupil: There is no immunity against malaria

One day, the “malaria forces” (mosquitoes) taught me a life lesson: Indeed, there is no immunity against malaria.

My local Government primary school rotated school attendance between morning and afternoon every week. As an 8-year-old, while preparing for my afternoon school I suddenly felt very cold and sleepy at the same time and decided to lie down briefly on my senior brother’s 6-spring bed in our sitting room. Shortly after, I was shivering and sweating profusely under 3 of my mother’s wrappers.

Help was not immediately near as most people were out. My head was pounding like I was a piece of yam being pounded with a pestle in my mother’s mortar. My stomach was churning. All the while, I kept saying “I am a strong boy, I will not be sick”! I was in that state for over an hour. I began to wonder if I was strong after all and will not end up dying. I could no longer talk but my teeth were chattering.

Gbenga second from left at about 7 years old in company of Sisters and friends in the compound

Sweating profusely, yet I was cold! I was helpless. It was in this state that one of our neighbor’s daughters walked into our sitting room, wondering if there was any food to eat. Immediately she saw the “strong man” shivering under 3 wrappers, she raised an alarm. Her shout saved me as neighbors immediately rushed into our sitting room. Among them was a relation of the landlord, a beautiful “Aunty” Esther, who was visiting from the Ahmadu Bello University school of Nursing. As soon as she came over, she said: “this is malaria!”.

Aunty Esther immediately organized and rescued me that day; she saved the life of the “strong man”! She quickly sought iced-cold water and toweled my body with my father’s “untouchable” towel hanging on the door of the inner room. Ah, what a good feel it was! She then gave me a sweet syrup which I later found out to be Paracetamol syrup. After about 30 minutes, she returned with a plate of hot rice and stew, encouraging me to eat before treatment with anti-malarial medication. I struggled to eat the rice, angry that I had lost my ever-available appetite! I only took few spoons, amidst the encouragement I received from all present.

I was then given an injection by Aunty Nurse Esther, tucked back into the bed and told to prepare to sleep. She then said, “Gbenga, no school for you today, okay? You even need to get well before you resume school”. Everyone knew I loved school. I had to lose a precious school day (and three more days) to malaria! So, I simply focused on staying alive, wondering which “wicked” mosquito bit me. That was the day I dramatically lost my title of “strong man” to malaria, painfully realizing that I was not immune to malaria at all!

My treatment against malaria was continued with further jabs of the needle (twice a day) over the course of the next 3 days at the Dispensary/Primary Health Unit “Aunty” Esther directed my parents to. I got well and resumed school after the third day. Later, I researched and found out I was treated with a sedative, Chloroquine and Paracetamol.

Gbenga with classmates at First Baptist Church, Benin Street, Sabon Gari Zaria

My parents later introduced “Sunday-Sunday Medicine” (one Sweetened pyrimethamine tablet weekly) against Malaria to our diet on Sundays. With this painful encounter with Malaria, I resolved to fight mosquitoes; I was determined to regain my “strong man” title. I made up my mind to be a community health worker, saving communities from diseases like malaria.

Fast-forward to Year 2007: My new twist in combating Malaria

By the year 2007, my personal malaria episodes had lessened with greater knowledge of the disease. In addition, the application of the preventive, diagnostic and treatment procedures reduced my malaria episodes to about 1 in 3 years. With each episode, I normally use laboratory test (microscopy) to confirm if severity is +, ++, or even +++. Thereafter, I get a prescription from a Physician on appropriate medication to use.

However, while practicing in Abuja, I encountered a tearful case of death from malaria, of an 8-year old beautiful daughter of a colleague. Three days prior to her death, a Community Pharmacist had dispensed anti-malarial medication to her, based on prescription tendered by the father from a Government hospital he had earlier taken her to. The news of her death brought back memories of how I would have died as

ACCESS-SMC Project: Scaling up access to seasonal malaria chemoprevention in the Sahel

an 8-year old from this same Malaria. Yes, this same Malaria! That death of the 8-year old triggered a fresh resolve in me to step up my fight with mosquitoes and combat malaria squarely at community, state, National and global levels.

Still at War with Malaria in 2018

Now armed with post-graduate training in Public Health/Epidemiology and field-based experience, my Malaria diagnosis strategy has now changed. I now use Rapid Diagnostic Test Kits (RDT). If confirmed positive, I receive prescription on the most applicable Artemisinin-based combination Therapy (ACT) to use.

My malaria story continues and will only end when mosquitoes are defeated – when children and adults no longer fall ill nor die from mosquito bites that cause malaria.

You can follow Gbenga on Twitter.

Seasonal Malaria Chemoprevention: An Effective Intervention for Reducing Malaria Morbidity and Mortality

Moumouni Bonkoungou, Ousmane Badolo, Stanislas Nébié, Justin Tiendrebeogo, Mathurin Dodo, Thierry Ouedraogo, Youssouf Sawadogo, Danielle Burke, Bethany Arnold, William Brieger, and Gladys Tetteh of the USAID/Jhpiego Improving Malaria care Project and the Burkina Faso National Malaria Control Program presented implementation of the SMC program at the 2018 Annual Meeting of the American Society of Tropical Medicine and Hygiene as seen below.

Malaria remains a serious problem in Burkina Faso, a high burden country. Data from the 2016 Health Management Information System reports 9,852,097 malaria cases, and 4,440 malaria Deaths. Malaria accounts for 43.38% of Outpatient department visits, 44.63% of Hospitalizations and 21.84% Deaths. The burden of Malaria is highest during the months of July– October. During these months, malaria transmission is intense due to heavy rainfall and intensive biting behavior

Seasonal Malaria Chemoprevention (SMC) is the Intermittent administration of full treatment of antimalarial medicines to children under 5 (age 3-59 months) in areas of high seasonal transmission. It is an important malaria elimination strategy in the West African Sahel. Effective prevention intervention takes place where Malaria transmission is concentrated within a high transmission season. The bulk of clinical malaria cases (> 60%) occur during short rainy season over 4 months.

SMC Implementation started when Burkina Faso adopted SMC in 2013 as key part of National Malaria control strategy. SMC uses Sulfadoxine-pyrimethamine plus amodiaquine (SP+AQ). Four monthly doses are given to children 3?59 months old from July to October by community health workers and other volunteers.

The Improving Malaria Care (IMC) project is implemented by Jhpiego and funded by the U.S. President’s Malaria Initiative (PMI). IMC supports National Malaria Control Program (NMCP) to improve quality of malaria prevention, diagnosis and treatment. NMCP expanded SMC implementation to 7 districts in 2014 and then 59 districts in 2017.

Process of SMC Planning and Implementation in Boromo and Dano Districts in 2017 provides an example of how the program works. Treatment Coverage during the 2017 campaign treated 58,246 children in Boromo District and 50,007 children in Dano,  or 97.3% of target population. The attached flow chart shows the Process of SMC Planning and Implementation in Boromo and Dano Districts in 2017. Microplanning is an important component. Reviewing lessons learned was crucial for planning SMC in 2018.  The attached charts show a Reduction of Severe Malaria Cases in Boromo over the implementation period of SMC as well as a Reduction of Severe Malaria Cases in Dano.

These successes were or without challenges to SMC Scale-up in Burkina Faso. It is difficult access to some villages during the rainy season. Limiting SMC administration to children below 5 years of age makes some parents with older children unhappy, and they also demand the service. As of 2017 there was lack of resources to cover all districts.

In conclusion, the NMCP continues to scale up SMC to reach all eligible children with support of implementing partners/projects like IMC. Moving forward, the NMCP aims to increase efficiency of SMC campaigns, achieve effectiveness of intervention, mitigate known challenges, and anticipate new challenges.

Our partners recommend that to improve coverage, safety, efficacy and health impact we should strengthen interpersonal communication with communities, conduct independent monitoring, optimize coordination of partners’ interventions, and synchronize with neighboring countries.

Acknowledgments: US President’s Malaria Initiative, United States Agency for International Development, Burkina Faso Ministry of Health, National Malaria Control Program

Mapping to Integrate Filariasis and Onchocerciasis Control with Malaria Interventions

William R Brieger (wbriege1@jhu.edu) and Gilbert Burnham (gburnha1@jhu.edu) of The Johns Hopkins Bloomberg School of Public Health, Department of International Health presented ideas about mapping and integration of neglected tropical diseases and malaria interventions at the Malaria World Congress, Melbourne, Australia, July 2018

Overview: Lymphatic Filariasis (LF) and Malaria share a common vector in sub-Saharan Africa. Mass Drug Administration (MDA) is a strategy that is common to both diseases. Where the diseases overlap there is the potential opportunity to coordinate both vector control and MDA to achieve synergy in program results. The example of Burkina Faso, supplemented with information from Ghana, serves as an example of what could be integrated and what actually happens.

Background: Thirty years ago then veterinary drug, ivermectin, was found effective in controlling neglected tropical diseases (NTDs), specifically two human filarial diseases: onchocerciasis and lymphatic filariasis (LF). The drug manufacturer donates 300 million treatments annually to eliminate both diseases. Since then, annual community based mass drug administration (MDA) efforts have resulted in millions of treatments in endemic countries and great progress has been made toward elimination of transmission. Through observation and experimentation, ivermectin was found to kill malaria carrying mosquitoes when they bite people who have taken ivermectin making it a useful tool for vector control.

CHWs in Burkina Faso demonstrating how to measure height to determine ivermectin dosage

Community Health Workers’ Role: Current research is examining how dosing and timing of treatments may impact national malaria vector control efforts. Comparing maps between malaria and LF can be a starting point for adapting ivermectin MDAs for malaria vector control. Burkina Faso MDAs are operationalized by community health workers (CHWs) who are part of a national program that provides treatment for common illnesses and also conducts village level onchocerciasis and LF MDAs. Vector Control with Long Lasting Insecticide Treated Nets In most of rural Africa, malaria and lymphatic Filariasis are co-endemic and share the same anopheles mosquito vector.

However, that does not mean that there is a coordinated effort to plan distribution of LLINs despite the fact that the intervention meets the needs of both disease control efforts. The current NTD programs in Burkina Faso and Ghana focus on Preventive Chemotherapy (PCT) delivered through Mass Drug Administration (MDA). Vector Control is seen as essential in areas co-endemic with LF, Loa loa and Malaria – mapping helps identify priority areas for vector control.

Vector Control by Chance: In Ghana, the NTD/LF elimination program was unaware of the LLIN coverage data available in the NMCP housed in an adjacent building. This illustrates the lack of collaboration between the two programs. Thus where — and if — vector control benefits the reduction of both diseases, it is often by chance where LF is concerned.  The International NGO, The Carter Center, may be the only one that includes vector control as part of its programming for both malaria and LF in Nigeria. This practice should be replicated by other partners and country programs where possible.

Mass Drug Administration: MDA is the major strategy for control of five PCT diseases in the NTD program, and LF is one of those. Currently MDA anti-malarial drugs has been considered in limited situations in countries where there are areas that have very low transmission In the future countries may consider research that shows mosquitocidal effects of Onchocerciasis and LF MDAs with ivermectin. Otherwise for malaria, a special intervention called Seasonal Malaria Chemoprevention (SMC) is used in an MDA-like approach to reach young children in the African Sahel during high transmission months. In both cases, existing cadres of (usually volunteer) community health workers are the front line providers of MDA.

Burkina Faso LF Map from ESPEN: Mapping shows 10 of 70 health districts are currently doing LF MDA, though all have done it. Thus CHWs in all districts are experienced in ivermectin MDA. The malaria map shows that two-thirds of districts have a malaria incidence of 400/1000 or more while 14 have lower incidence. There is an overlap between current LF MDA districts and higher incidence malaria districts Both LF and Malaria Program Coverage can be seen to overlap in [program maps.

Ghana CHWs explain how they conduct MDA

Ghana Experiences: Ghana provides a contrasting example. There five regions in central Ghana that are mostly non-endemic for LF but do have moderate malaria transmission In the south two regions with former LF MDA activity overlap with higher malaria endemicity While four northern regions have lower malaria parasite prevalence, they do have current and recent LF MDAs Community Directed Distributors work with LF MDA in Ghana

Conclusions: Malaria elimination will need a mix of strategies to be successful. Therefore, it is not too early for malaria and NTD program managers, as well as their respective donors, to begin comparing maps to identify possibilities for adapting ivermectin MDAs for malaria vector control. Even though one endemic disease is nearing control or elimination, the infrastructure put in place to accomplish this can be mobilized for other disease control efforts – as long as we map where interventions and resources have been targeted.

Multilateral Initiative for Malaria: Posters Range from Prevention to Cost to E-Learning and Beyond

A major feature of all conferences are the poster sessions. These are often overlooked due to timing and placement. Fortunately at the recent 7th Multilateral Initiative for Malaria Conference in Dakar, tea breaks and lunch were made available in the poster tent ensuring more people came to view. Even so some people may have missed the valuable knowledge shared through this medium. We tweeted many of the posters during the event, but below are six posters in more detail.

These range from evaluating a malaria surveillance system to financing systems to sustain malaria drug supplies, including through community pharmacies. The potential of E-Learning for malaria capacity building was explored, and the process pf establishing a national malaria operations research agenda was presented. Several posters examined the seasonal malaria chemoprevention (SMC) program in the Sahel of West Africa including one from Mali as seen below.

Please contact the authors for additional information and updates. Readers who presented a poster at MIM are welcome to share their findings with us.