Category Archives: MDA

Mapping to Integrate Filariasis and Onchocerciasis Control with Malaria Interventions

William R Brieger (wbriege1@jhu.edu) and Gilbert Burnham (gburnha1@jhu.edu) of The Johns Hopkins Bloomberg School of Public Health, Department of International Health presented ideas about mapping and integration of neglected tropical diseases and malaria interventions at the Malaria World Congress, Melbourne, Australia, July 2018

Overview: Lymphatic Filariasis (LF) and Malaria share a common vector in sub-Saharan Africa. Mass Drug Administration (MDA) is a strategy that is common to both diseases. Where the diseases overlap there is the potential opportunity to coordinate both vector control and MDA to achieve synergy in program results. The example of Burkina Faso, supplemented with information from Ghana, serves as an example of what could be integrated and what actually happens.

Background: Thirty years ago then veterinary drug, ivermectin, was found effective in controlling neglected tropical diseases (NTDs), specifically two human filarial diseases: onchocerciasis and lymphatic filariasis (LF). The drug manufacturer donates 300 million treatments annually to eliminate both diseases. Since then, annual community based mass drug administration (MDA) efforts have resulted in millions of treatments in endemic countries and great progress has been made toward elimination of transmission. Through observation and experimentation, ivermectin was found to kill malaria carrying mosquitoes when they bite people who have taken ivermectin making it a useful tool for vector control.

CHWs in Burkina Faso demonstrating how to measure height to determine ivermectin dosage

Community Health Workers’ Role: Current research is examining how dosing and timing of treatments may impact national malaria vector control efforts. Comparing maps between malaria and LF can be a starting point for adapting ivermectin MDAs for malaria vector control. Burkina Faso MDAs are operationalized by community health workers (CHWs) who are part of a national program that provides treatment for common illnesses and also conducts village level onchocerciasis and LF MDAs. Vector Control with Long Lasting Insecticide Treated Nets In most of rural Africa, malaria and lymphatic Filariasis are co-endemic and share the same anopheles mosquito vector.

However, that does not mean that there is a coordinated effort to plan distribution of LLINs despite the fact that the intervention meets the needs of both disease control efforts. The current NTD programs in Burkina Faso and Ghana focus on Preventive Chemotherapy (PCT) delivered through Mass Drug Administration (MDA). Vector Control is seen as essential in areas co-endemic with LF, Loa loa and Malaria – mapping helps identify priority areas for vector control.

Vector Control by Chance: In Ghana, the NTD/LF elimination program was unaware of the LLIN coverage data available in the NMCP housed in an adjacent building. This illustrates the lack of collaboration between the two programs. Thus where — and if — vector control benefits the reduction of both diseases, it is often by chance where LF is concerned.  The International NGO, The Carter Center, may be the only one that includes vector control as part of its programming for both malaria and LF in Nigeria. This practice should be replicated by other partners and country programs where possible.

Mass Drug Administration: MDA is the major strategy for control of five PCT diseases in the NTD program, and LF is one of those. Currently MDA anti-malarial drugs has been considered in limited situations in countries where there are areas that have very low transmission In the future countries may consider research that shows mosquitocidal effects of Onchocerciasis and LF MDAs with ivermectin. Otherwise for malaria, a special intervention called Seasonal Malaria Chemoprevention (SMC) is used in an MDA-like approach to reach young children in the African Sahel during high transmission months. In both cases, existing cadres of (usually volunteer) community health workers are the front line providers of MDA.

Burkina Faso LF Map from ESPEN: Mapping shows 10 of 70 health districts are currently doing LF MDA, though all have done it. Thus CHWs in all districts are experienced in ivermectin MDA. The malaria map shows that two-thirds of districts have a malaria incidence of 400/1000 or more while 14 have lower incidence. There is an overlap between current LF MDA districts and higher incidence malaria districts Both LF and Malaria Program Coverage can be seen to overlap in [program maps.

Ghana CHWs explain how they conduct MDA

Ghana Experiences: Ghana provides a contrasting example. There five regions in central Ghana that are mostly non-endemic for LF but do have moderate malaria transmission In the south two regions with former LF MDA activity overlap with higher malaria endemicity While four northern regions have lower malaria parasite prevalence, they do have current and recent LF MDAs Community Directed Distributors work with LF MDA in Ghana

Conclusions: Malaria elimination will need a mix of strategies to be successful. Therefore, it is not too early for malaria and NTD program managers, as well as their respective donors, to begin comparing maps to identify possibilities for adapting ivermectin MDAs for malaria vector control. Even though one endemic disease is nearing control or elimination, the infrastructure put in place to accomplish this can be mobilized for other disease control efforts – as long as we map where interventions and resources have been targeted.

Many Neglected Tropical Diseases: What About Eliminating Them?

Testing to see if transmission of lymphatic filariasis has stopped in Burkina Faso

Two things we need to note about the list of 20 diseases that the World Health Organization and partners classify as Neglected Tropical Diseases (NTDs). First, diseases like Rabies, Snakebite/envenoming, and Leprosy, while certainly more common in the tropics now, have in the past been global in distribution. Secondly some of the diseases have not been neglected. Onchocerciasis or river blindness has been the focus of a global partnership since 1975, and transmission in the America’s and much of the Sahel in Africa has been halted. Elimination of Dracunculiasis or Guinea Worm has also been the subject of many World Health Assembly Resolutions, and concerted effort has brought the number of cases down from 3.5 million in 1986 to 30 in 2017.  What is more to the point about these diseases is that they affect neglected people, the poor and vulnerable in remote rural areas or urban slums.

Still when we can compare NTD control programs with the rise of major disease control efforts like the Global Fund to fight AIDS, Tuberculosis and Malaria, the President’s Emergency Program For AIDS Relief, the President’s Malaria Initiative, World Bank Malaria Booster Program, Global A Vaccine Initiative among others, we can see that the global community has been able to focus major financial resources on a few diseases.  Now with the Sustainable Development Goals, that focus expanded from infectious to Non-Communicable Diseases.  It is natural therefore to fear that tropical health problems that are responsible for major loss of life and economic capacity will not be adequately addressed.

A system of rewards helped identify the last cases in many guinea worm endemic countries

Based on the World Health Organization’s 2020 Roadmap on NTDs, the London Declaration on NTDs recognized a “tremendous opportunity to control or eliminate at least 10 of these devastating diseases by the end of the decade” (i.e. by 2020). These include eradication of Guinea worm disease, and elimination by 2020 of lymphatic filariasis (LF), leprosy, sleeping sickness {human African trypanosomiasis) and blinding trachoma. In addition drug access programmes should help control by 2020 schistosomiasis, soil-transmitted helminthes (STH), Chagas disease, visceral leishmaniasis and river blindness (onchocerciasis).

Five of the diseases are notable in that they can either be controlled or eliminated through Mass Drug Administration (MDA) using Preventive Chemo-Therapy (PCT). This effort is aided by drug donation programs at the global level and community based MDA at the local level. Ten companies were signatories to the London Declaration and contributed to drug donation programs to achieve MDA. According to WHO,

Preventive chemotherapy is aimed at optimizing the largescale use of safe, single-dose medicines and offers the best means of reducing the extensive morbidity associated with four helminthiases (lymphatic filariasis, onchocerciasis, schistosomiasis and soil-transmitted helminthiases) (6). Additionally, the large-scale administration of azithromycin – a key component of the SAFE strategy for trachoma (that is, lid surgery (S), antibiotics to treat the community pool of infection (A), facial cleanliness (C) and environmental improvement (E)) – is amenable to close coordination and, in future, possibly co-administration with interventions targeted at helminthiases.

Community health workers are the cornerstone of many NTD elimination programs

Targets for the 5 PCT diseases vary. The aim is to eliminate LF and Trachoma by 2020. Although the efforts against onchocerciasis have been running the longest, the refocus from control to elimination meant increasing the geographical scope of intervention, and now elimination may not be feasible until 2025.  With a focus mainly on the school aged and based populations, programs against schistosomiasis and STH talk of control, not elimination, although some endemic countries hope that elimination may be possible if the focus of these programs expands. So far, Togo is the only Sub-Saharan African country to have eliminated LF, and Ghana to have eliminated Trachoma.

Partnerships, funding and drug donations need to be strengthened if more countries are to join the ranks of Togo and Nepal.

Nepal on the Path to Malaria Elimination

Jhpiego’s Emmanuel Le Perru has been placed with Nepal’s malaria control program by the Maternal and Child Survival Program (USAID) to strengthen the agency’s overall response to malaria as well as ensure top performance of Nepal’s Global Fund Malaria grant. Emmanuel shares his experiences with us here.

From 3,000 cases in 2010, Nepal reported around 1,000 cases in 2016, including 85% Plasmodium vivax cases. However private sector reporting is almost null so number of total cases may be the double. Nepal’s National Malaria Strategic Plan (NMSP) targets Elimination by 2022 (0 indigenous cases) with WHO certification by 2026.

Ward Level Micro-stratification is an important step for targeting appropriate interventions. Key interventions in the NMSP include case notification system by SMS (from health post workers or district vector control inspectors) to a Malaria Disease Information System, later to be merged with DHIS2. Case investigation teams conduct case and foci profiling as well as “passive cases” active detection and treatment (including staff from district such as surveillance coordinator, vector control inspector, and entomologist).

Malaria Mobile Clinics actively search/treat new cases in high risk areas (slums, brick factories, river villages or flooded areas, migrant workers villages, etc.). PCR diagnosis with Dry Blood Spot or Whole Blood is used to identify low density parasite cases, relapses or re-introduction. Coming up in April-June 2018 will be a Pilot of MDA (primaquine) for Plasmodium vivax in isolated settings (80% of cases in the country are P vivax).

Recent successes in the national malaria effort include the number of cases notified by SMS went from 0% to 45%. Also the number of cases fully investigated went from 22% to 52%, though this needs to go up to 95% for elimination. 73% of districts are now submitting timely malaria data reports per national guidelines, an increase from 52% in November 2015.

The border runs right through this town making importation of malaria cases easy

The Global Fund (GFATM) malaria grant rating went from B2 to A2. Nepal Epidemiology Disease Control Division (EDCD), WHO and GFATM are keen to pilot MDA for P vivax in isolated setting which MCSP/Jhpiego Advisor taking the lead.

Moving forward the malaria elimination effort needs to address Indo-Nepal Cross boarder collaboration since 45% cases are imported. Hopefully WHO will help EDCD Nepal to propose a plan of action to India. The program still needs to convince partners of relevance of malaria mobile clinics vs community testing and of the relevance of MDA for P vivax. More entomological and PCR/laboratory expertise is needed. With these measures malaria elimination should be in sight.

Leadership and Support for Malaria Pre-Elimination in Nepal

Emmanuel Le Perru, Jhpiego field staff in Nepal, shared his experiences in aiding the malaria pre-elimination efforts in the country during a retreat that preceded the 65th Annual Meeting of the American Society of Tropical Medicine and Hygiene in Atlanta. Here are some highlights of his talk.

risk-mapMalaria Pre-Elimination efforts are targeting 0 deaths as well as investigation of 100% of confirmed cases in Nepal. Systematic entomology investigation/interventions are required. Glucose-6-Phosphate Dehydrogenase deficiency (enzyme genetic defect causing hemolysis with primaquine) testing for Plasmodium vivax in high G6PDd prevalence communities is required. Cases should receive treatment within 72 hours of symptoms for Pf (to quickly prevent transmission and gametocyte reservoir). There is also a need to distinguish between indigenous and imported cases.

Jhpiego is providing technical assistance and capacity building for Nepal’s Ministry of Health pre-elimination efforts as follows:

  • Integrated Vector Management
  • Micro-stratification
  • Entomology curriculum to be conducted in medical college (need new positions)
  • Case-based Surveillance guidelines
  • Private-sector engagement (for increased reporting and product quality control/procurement such as Antigen RDTs)
  • Capacity Assessments in 9 health systems strengthening components at central and district levels (Jhpiego Malaria Implementation Guide)
  • Human resources: clear job descriptions and performance goals
  • Leadership & Management development program

gfatm-bednets-distProgram highlights include the fact that the Global Fund malaria grant rating improved from B2 (inadequate but demonstrating potential) in January 2016, but now A2 (meeting expectations) in November 2016. Concept note for operational research at 2 or 3 border check points has been developed in order to determine whether such intervention (communication & voluntary screening) is cost-effective and relevant to catch/target imported cases, raise awareness on malaria available services, detect/prevent sources of potential outbreaks. This will inform GFATM on the relevance to fund such intervention. A similar approach was done at the China-Myanmar border but was not recognized by not WHO.

Nepal's Global Fund Grant Indicators for Malaria Case Management

Nepal’s Global Fund Grant Indicators for Malaria Case Management

Although the National Malaria Strategic Plan refers to high risk groups (forest workers, national parks security personnel, refugees, prisoners, etc.) evidence is needed to back this up. A study or improved investigation forms are needed to identify such groups and use this information to design appropriate behavior change communications and other interventions.

Special Programming Highlights include proposing a focus on Closed/Isolated Settings/Foci (limited migration, duration and population) to WHO and GFATM. Considering a targeted mass drug administration (MDA) Plasmodium vivax (not yes recommended by WHO) with Primaquine/G6PD testing. Consideration is being given to new drugs in the pipeline such as Ivermectin. Molecular Testing using Polymerase Chain Reaction (PCR) to detect low parasitemia, asymptomatic or re-infection cases (Pv includes inactive/dormant sporozoites known as hypnozoites) is being proposed.

Community based testing as proposed in the Global Fund grant needs strengthening. Therefore RDT use by Female Community Health Volunteer is being considered. Active case detection is another possibility for those areas moving toward pre-elimination. As mentioned, there is also need for studies of asymptomatic infection.

Lessons learned so far for best practices for efforts in identifying specific pre-elimination interventions include the value of getting consensus at national level through the Malaria Technical Working Group. There is also need to challenge WHO recommendations and engage dialogue to get creative. At present there is a risk of a Catch 22 situation wherein the GFATM asks for innovative interventions but at the same time tries to adhere strictly WHO to existing guidance.

The Nepalese malaria program is in constant dialogue with the GFATM Fund Portfolio Manager and team on the local context and technical challenges in order to get them involved in looking for innovative solutions.

Challenges arise in malaria diagnostics. While systematic microscopy is the gold standard, quality can be poor because of low stain/re-agent quality, constant staff turnover and donor reluctance to fund additional training. Also microscopy confirmation and slide quality control are time consuming, and often this process is not clear or well followed. PCR require specific equipment, training and qualifications. Takes time to be operational.

There are opportunities moving forward.  Progress could be made if there were more “elimination experts” to position to influencer to WHO to seek and propose new interventions for the pre-elimination stage. Nepal provides an ideal opportunity to test new ideas. It will also be necessary for the national malaria program staff to receive regular technical updates on program issues such as new drugs (Ivermectin?) and on-going pilots of MDA.