Agriculture and Promotion of Food Security Can Affect Malaria Transmission

The link between malaria and food security in a global context has been made. The influence of malaria on food security was examined. Now the connection between agriculture practices/food security and malaria is pursued below.

A common complaint with programs that distribute insecticide-treated bednets to prevent malaria is that the nets may be used for other purposes that the intended effort to prevent infected mosquitoes from biting people. All informants interviewed for a study in Western Zambia reported that ITNs are regularly used for fishing and the misuse is widespread. Unsustainable fishing practices, drought and population pressure were mentioned as reasons for fishery decline. The implication was that the use of free ITNs for fishing at least saved the population money in a time of declining fortunes.

A broader review of the ITNs for fishing issue was done through contacting expert witnesses across Africa. Mosquito net fishing (MNF) was found to be a broadly pan-tropical activity, particularly prevalent in sub-Saharan Africa. The authors found that, “Perceived drivers of MNF were closely related to poverty, revealing potentially complex and arguably detrimental livelihood and food security implications.”

The mosquito breeding potential of dams cuts across Africa with the number of dams located in malarious areas projected to increase according to Kibret and colleagues. This is because “The population at risk of malaria around existing dams and associated reservoirs, is estimated to increase from 15 million in 2010 to 21-23 million in the 2020s, 25-26 million in the 2050s and 28-29 million in the 2080s.” In addition, areas with dams but without malaria transmission at present, will likely transition to regions of unstable transmission due to climate change.

Likewise, a study in Ethiopia starts with the assertion that, “Dams are important to ensure food security and promote economic development in sub-Saharan Africa,” and then stresses the importance of understanding the consequences of these projects. The researchers found that “the mean monthly malaria incidence and anopheline larval density was generally higher in the dam villages than in the non-dam villages” in all the three dam settings studied. So while dams can increase agricultural production, the authors concluded that, “the presence of dams intensifies malaria transmission in lowland and midland ecological settings.”

Hydro-agricultural projects include dams and irrigation. Human bait mosquito captures volunteers in hydro-agricultural and river bank sites in Cameroon Akono et al. found that mosquito biting rates were higher in hydro-agricultural sites of less urbanized and urban settings than in natural river banks sites. An additional implication is that urban farming, an important component of food security, may influence mosquito and malaria prevalence.

Stoler and colleagues pursued this question of urban agriculture. The odds of self-reported malaria are significantly higher for women in Accra, Ghana who are living within 1 km of urban agriculture compared with all women living near an irrigation source, the association disappearing beyond this critical distance. Likewise in Kumasi, Afrane et al. learned that “adult and larval mosquito abundance and larval survival were high in the irrigated fields in the irrigated (urban) vegetable farm. This therefore, contributed significantly to adult mosquito populations and hence malaria transmission in the city.”

Even agricultural practices in smaller subsistence farms can foster malaria mosquito breeding. Practices found in southwest Nigeria include collection of pools of water in the farms for soaking cassava tubers, digging of trenches, irrigation of farms, and the presence of fish ponds.

Communities can perceive how agricultural practices may contribute to malaria. In Tanzania a fair number of rural respondents associated growing of rice with malaria. They also noted that the need to sleep on their farms at times meant they could not benefit from the mosquito nets hanging back in their house, some hours walk away. The idea of rice cultivation and malaria was tested in central Kenya. Mwangangi and co-researchers found that, “Rice fields and associated canals were the most productive habitat types,” for malaria mosquito breeding. Overall, Mboera et al. found, “evidence that malaria transmission risk varies even between neighbouring villages and is influenced by agro-ecosystems.”

Although we can establish the two-way link or intersection between malaria and food security, we can see that recommended joint or integrated programming may not always be optimal at various levels from the nation to the community. Greater collaboration between health and agricultural ministries and agencies is needed, supported by national policies that see malaria and food production as part of overall national development goals.

One thought on “Agriculture and Promotion of Food Security Can Affect Malaria Transmission

Leave a Reply

Your email address will not be published. Required fields are marked *

 

This site uses Akismet to reduce spam. Learn how your comment data is processed.